microbiome

PHILADELPHIA – The antibiotic vancomycin alters the gut microbiome in a way that can help prime the immune system to more effectively attack tumor cells after radiation therapy. A new study in mice from researchers at the Abramson Cancer Center of the University of Pennsylvania found giving a dose of the common antibiotic not only helped immune cells kill tumors that were directly treated with radiation, but also kill cancer cells that were further away in the body, paving the way for researchers to test the approach in a human clinical trial. The Journal of Clinical Investigation published the findings today.

More than half of all patients with solid tumors undergo radiation therapy at some point during their treatment. In recent years, multiple studies have shown that giving patients higher doses of radiation over the course of fewer treatments – called hypo-fractionated radiotherapy – can induce a stronger immune response in patients. In addition, hypo-fractionated doses have the ability to impact other tumors cells in the body that weren’t directly treated with radiation. This is known as the abscopal effect.

“Our study shows that vancomycin seems to boost the effect of the hypo-fractionated radiation itself on the targeted tumor site while also aiding the abscopal effect, helping the immune system fight tumors away from the treatment site,” said the study’s senior author Andrea Facciabene, PhD, an associate professor of Radiation Oncology in Penn’s Perelman School of Medicine.

Facciabene and his team chose vancomycin for a few specific reasons. First, it mostly targets gram-positive bacteria, making it disruptive to the gut microbiome. Second, it’s a large molecule, which means it stays in the gut and does not circulate to the rest of the body the way other antibiotics do. The fact that it is not systemic limits the impact it has on the rest of the body’s microbiome.

In this study, researchers found vancomycin specifically improved the function of dendritic cells, which are the messenger cells that T cells rely on to know what to attack. While researchers used melanoma, lung, and cervical cancer models for this work, they note the approach could have implications for a wide variety of cancer types. This study also builds off the team’s previous research, which showed a similar effect in T cell therapies, meaning it adds to a growing body of evidence.

“This only scratches the surface when it comes to understanding the connection between the makeup of the gut microbiome and its impact on RT induced immune responses to cancer,” said the study’s co-senior author Constantinos Koumenis, PhD, the Richard Chamberlain Professor of Radiation Oncology.  He emphasized that further research is needed to understand the implications of specific strains or clusters of bacteria.

“However, what’s clear is that antibiotics play a role and can potentially impact treatments and outcomes for cancer patients,” Facciabene said. The researchers are planning a phase 1 study to translate this approach into the clinic.

Other Penn authors on the study include co-lead authors Mireia Uribe-Herranz, Stavros Rafail, Silvia Beghi, and Luis Gil-de-Gómez, as well as co-authors Ioannis Verginadis, Sergey Pustylnikov, Stefano Pierini, Renzo Perales-Linares, Ian A. Blair, Clementina A. Mesaros, and Frederic Bushman.

The study was supported by the National Institutes of Health (R01CA219871-01A1)

Topic:

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, excellence in patient care, and community service. The organization consists of the University of Pennsylvania Health System and Penn’s Raymond and Ruth Perelman School of Medicine, founded in 1765 as the nation’s first medical school.

The Perelman School of Medicine is consistently among the nation's top recipients of funding from the National Institutes of Health, with $550 million awarded in the 2022 fiscal year. Home to a proud history of “firsts” in medicine, Penn Medicine teams have pioneered discoveries and innovations that have shaped modern medicine, including recent breakthroughs such as CAR T cell therapy for cancer and the mRNA technology used in COVID-19 vaccines.

The University of Pennsylvania Health System’s patient care facilities stretch from the Susquehanna River in Pennsylvania to the New Jersey shore. These include the Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, Chester County Hospital, Lancaster General Health, Penn Medicine Princeton Health, and Pennsylvania Hospital—the nation’s first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is an $11.1 billion enterprise powered by more than 49,000 talented faculty and staff.

Share This Page: