> Recently, researchers from the University of Pennsylvania School of Medicine determined how microRNAs (miRNAs) team up with a regulatory protein to halt protein production.
> By improving understanding about how miRNAs control protein synthesis under normal conditions, the researchers hope to identify how miRNA-mediated gene expression regulation fails in human diseases.
> Results of the study were published recently in Cell.

(PHILADELPHIA) – While most RNAs work to create, package, and transfer proteins as determined by the cell’s immediate needs, miniature pieces of RNA, called microRNAs (miRNAs) regulate gene expression. Recently, researchers from the University of Pennsylvania School of Medicine determined how miRNAs team up with a regulatory protein to halt protein production. Results of the study were published recently in Cell.

Scientists estimate miRNAs have the ability to regulate the expression of approximately one third of human genes, and previous studies have linked abnormal activity of miRNAs to cancer and other diseases.

While scientists know that most miRNAs in mammals repress the translation of RNA to protein, the molecular steps by which they achieve regulation are largely unknown. By studying the relationship between human miRNAs and the regulatory protein Argonaute2 (Ago2), lead author Marianthi Kiriakidou, MD, Assistant Professor of Medicine, and others set out to uncover how miRNAs control protein synthesis.

Before interfering with protein production, miRNAs associate with proteins from the Argonaute (Ago) family. According to Kiriakidou, “Ago proteins are at the heart of the miRNA regulatory pathway, due to their engagement with miRNAs.”

The miRNA and Ago protein association dictates the way that miRNA regulates gene production. While there are four different proteins in the human Ago family, Kiriakidou and colleagues from Zissimos Mourelatos’ team focused on the interaction between miRNA and Ago2. Ago2 stands out among the four mammalian Ago proteins since it is the only Ago protein able to mediate RNA interference by inhibiting gene expression.

Under normal conditions, the initiation of protein synthesis is kicked off when a protein called eIF4E binds to the front end, or cap, of messenger RNA. With eIF4E in place, a cascade of protein-protein and protein-RNA interactions allows the manufacturing of proteins to begin. However, the assembly of proteins quickly comes to a standstill when the miRNA-Ago2 complex binds near the back end of a messenger RNA. By analyzing the amino acid sequence of Ago2, Kiriakidou and others uncovered a similarity with the cap-binding domain of the EIF4E protein that offered a clue as to why the miRNA-Ago2 complex blocked protein production.

“When the miRNA-Ago2 complex pairs with a messenger RNA, Ago2 engages the cap of the RNA,” explains Kiriakidou. “We believe this results in competition with eIF4E and disrupts the normal initiation process of protein synthesis.”

By improving understanding about how miRNAs control protein synthesis under normal conditions, the researchers hope to identify how miRNA-mediated gene expression regulation fails in human diseases.

“Many studies show that miRNAs are differentially expressed in a wide variety of human cancers and therefore have the potential to be used as diagnostic biomarkers for cancers,” says Kiriakidou. “Understanding the central role of Ago2 in the miRNA pathway provides a foundation for future studies that aim to elucidate the contribution of miRNAs to normal cellular functions and disease processes.”

Penn co-authors are Grace Tan, Styliani Lamprinaki, Mariangels De Plannell-Saguer, Peter T. Nelson, and Zissimos Mourelatos.

This work was funded by the National Institute of Allergy and Infectious Diseases, the National Institute of General Medical Sciences, The Philadelphia Foundation, and the McCabe Fund.

###

PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is ranked #2 in the nation for receipt of NIH research funds; and ranked #3 in the nation in U.S. News & World Report's most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals, all of which have received numerous national patient-care honors [Hospital of the University of Pennsylvania; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center]; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, excellence in patient care, and community service. The organization consists of the University of Pennsylvania Health System and Penn’s Raymond and Ruth Perelman School of Medicine, founded in 1765 as the nation’s first medical school.

The Perelman School of Medicine is consistently among the nation's top recipients of funding from the National Institutes of Health, with $550 million awarded in the 2022 fiscal year. Home to a proud history of “firsts” in medicine, Penn Medicine teams have pioneered discoveries and innovations that have shaped modern medicine, including recent breakthroughs such as CAR T cell therapy for cancer and the mRNA technology used in COVID-19 vaccines.

The University of Pennsylvania Health System’s patient care facilities stretch from the Susquehanna River in Pennsylvania to the New Jersey shore. These include the Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, Chester County Hospital, Lancaster General Health, Penn Medicine Princeton Health, and Pennsylvania Hospital—the nation’s first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is an $11.1 billion enterprise powered by more than 49,000 talented faculty and staff.

Share This Page: