Adrenaline Packs a Powerful Punch in the
Use of Antidepressants, According to an
Animal-Model Study at Penn

Adrenaline-Deficient Mice Lack Responses to Antidepressant Drugs

(Philadelphia, PA)—Researchers from the University of Pennsylvania School of Medicine found that norepinephrine (adrenaline) plays an important role in animals in determining behavioral effects in some of the most commonly prescribed antidepressants, regardless of which biochemical pathway the drug uses to alleviate symptoms of depression. This finding -- published in the May 2004 Proceedings of the National Academy of Sciences -- should help scientists design more effective drugs for patients.

Using genetically-altered mice unable to produce norepinephrine, they tested behavioral changes brought on by two different antidepressant classes. With the exception of one drug, they found that those lacking norepinephrine did not respond to the drugs. “Millions of Americans suffer from major depressive disorders and this study helps us understand how antidepressant drugs are processed to produce clinical therapeutic effects. It helps us understand how to redesign better drugs and which treatments will work better for which patients,” says the study’s lead author, Irwin Lucki, PhD, Professor of Psychiatry and Pharmacology and Director of the Behavioral Psychopharmacology Laboratory at Penn.

There are currently two major classes of antidepressants used to treat depression: norepinephrine reuptake inhibitors (which work by increasing the synaptic activty of adrenaline
in the brain); and selective serotonin reuptake inhibitors (which elicit their effects by increasing the activity of serotnin in the brain). Previously, it was believed that SSRIs – whose over-the-counter names include Prozac, Zoloft, Paxil, and Celexia – produced effects on the serotonergic system only; but the Penn researchers’ findings showed that the effects of most SSRIs can also depend on responses from the noradrenergic system. “This study is the first to use this unique animal model to test whether the drugs are still effective in animals that lack norepinephrine, a key neurotransmitter in the brain,” Lucki adds.

The researchers tested eight commonly prescribed antidepressant drugs, including four SSRIs. The SSRI medications tested were fluoxetine (Prozac), sertraline (Zoloft), paroxetine (Paxil) and citalopram (Celexia). In animal models, those able to produce norepinephrine experienced behavioral changes when given the antidepressants. But all of the antidepressants, except citalopram, failed to work in the models lacking norepinephrine. These results provide striking evidence that norepinephrine plays a critical role for the creation of desired behavioral effects of most classes of antidepressant compounds including the SSRIs.

Penn researchers also contributing to this study include: John F. Cryan, Olivia F. O’Leary, Sung-Ha Jin, Julie C. Friedland, Ming Ouyang, Bradford R. Hirsch, Michelle E. Page, Ashutosh Dalvi, and Steven A. Thomas.

The study was funded by grants from the United States Public Health Service, The National Institute of Mental Health, The National Institute of Neurological Disorders and Stroke, and a Young Investigator Award from the National Alliance for Research on Schizophrenia and Depression.


For a printer friendly version of this release, click here.

###

PENN Medicine is a $2.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System (created in 1993 as the nation’s first integrated academic health system).

Penn’s School of Medicine is ranked #3 in the nation for receipt of NIH research funds; and ranked #4 in the nation in U.S. News & World Report’s most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

Penn Health System consists of four hospitals (including its flagship Hospital of the University of Pennsylvania, consistently rated one of the nation’s “Honor Roll” hospitals by U.S. News & World Report), a faculty practice plan, a primary-care provider network, three multispecialty satellite facilities, and home health care and hospice.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, excellence in patient care, and community service. The organization consists of the University of Pennsylvania Health System and Penn’s Raymond and Ruth Perelman School of Medicine, founded in 1765 as the nation’s first medical school.

The Perelman School of Medicine is consistently among the nation's top recipients of funding from the National Institutes of Health, with $550 million awarded in the 2022 fiscal year. Home to a proud history of “firsts” in medicine, Penn Medicine teams have pioneered discoveries and innovations that have shaped modern medicine, including recent breakthroughs such as CAR T cell therapy for cancer and the mRNA technology used in COVID-19 vaccines.

The University of Pennsylvania Health System’s patient care facilities stretch from the Susquehanna River in Pennsylvania to the New Jersey shore. These include the Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, Chester County Hospital, Lancaster General Health, Penn Medicine Princeton Health, and Pennsylvania Hospital—the nation’s first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is an $11.1 billion enterprise powered by more than 49,000 talented faculty and staff.

Share This Page: